Hierarchical Dirichlet Process Hidden Markov Models for abnormality detection in robotic assembly
نویسندگان
چکیده
The Hierarchical Dirichlet Process Hidden Markov model (HDP-HMM) is a Bayesian non parametric extension of the classical Hidden Markov Model (HMM) that allows to infer posterior probability over the cardinality of the hidden space, thus avoiding the necessity of cross-validation arising in standard EM training. This paper presents the application of Hierarchical Dirichlet Process Hidden Markov Models (HDP-HMM) to error detection during a robotic assembly task. Force sensor data is recorded for successful and failed task executions and manually labeled. An HDP-HMM is then fit to a set of training trials for each task execution outcome. We show how posteriors on the learned models could be used to recognize on-line deviation from expected behavior, thus allowing the robotic system to promptly react to task execution errors.
منابع مشابه
Abnormality Detection in a Landing Operation Using Hidden Markov Model
The air transport industry is seeking to manage risks in air travels. Its main objective is to detect abnormal behaviors in various flight conditions. The current methods have some limitations and are based on studying the risks and measuring the effective parameters. These parameters do not remove the dependency of a flight process on the time and human decisions. In this paper, we used an HMM...
متن کاملBayesian nonparametric hidden semi-Markov models
There is much interest in the Hierarchical Dirichlet Process Hidden Markov Model (HDPHMM) as a natural Bayesian nonparametric extension of the ubiquitous Hidden Markov Model for learning from sequential and time-series data. However, in many settings the HDP-HMM’s strict Markovian constraints are undesirable, particularly if we wish to learn or encode non-geometric state durations. We can exten...
متن کاملMixed Membership Models for Time Series
20.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 20.1.1 State-Space Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 20.1.2 Latent Dirichlet Allocation . . . . . . . . . . . ...
متن کاملVariational Inference for Hierarchical Dirichlet Process Based Nonparametric Models
We examine two popular statistical models, the hidden Markov model and mixed membership stochastic blockmodel. Using the hierarchical Dirichlet process, we define nonparametric variants of these models. We develop a memoized online variational inference algorithm that uses a new objective function to properly penalize the addition of unneeded states in either model. Finally, we demonstrate that...
متن کاملBayesian non-parametric hidden Markov models with applications in genomics
We propose a flexible non-parametric specification of the emission distribution in hidden Markov models and we introduce a novel methodology for carrying out the computations. Whereas current approaches use a finite mixture model, we argue in favour of an infinite mixture model given by a mixture of Dirichlet processes.The computational framework is based on auxiliary variable representations o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012